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Theoretical analysis of reflection high-energy
electron diffraction (RHEED) and reflection high-
energy positron diffraction (RHEPD) intensity
oscillations expected for the perfect layer-by-layer
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Predictions from two theoretical models, allowing one to determine the phase of

intensity oscillations, are compared for reflected beams of electrons and

positrons. Namely, results of the precise dynamical calculations are compared

with results obtained using a simplified approach. Within the simplified model,

changes in the specularly reflected beam intensity, expected to occur during the

deposition of new atoms, are described with the help of interfering waves and

the effect of refraction, and respective approximate analytical formulas are

employed to determine the phase of the oscillations. It is found that the

simplified model is very useful for understanding the physics ruling the

appearance of intensity oscillations. However, it seems that the model with the

realistic potential is more suitable for carrying out interpretations of

experimental data.

1. Introduction

Reflection high-energy electron diffraction (RHEED) is a

relatively old technique used to investigate surfaces of crys-

talline solids (Ichimiya & Cohen, 2004; Peng et al., 2004).

However, it is interesting to note that the theory of RHEED is

still incomplete. In fact, experimental data can be precisely

interpreted mostly for flat surfaces. For flat samples, a two-

dimensional Bloch wave approach (Maksym & Beeby, 1981;

Ichimiya, 1983; Zhao et al., 1988) can be used, or alternatively,

it is possible to apply a properly modified (Peng & Cowley,

1986; Ma & Marks, 1992) multislice method originally devel-

oped for the case of transmission geometry. However, for

surfaces with steps, islands etc., quantitative theoretical treat-

ment is available only for special cases. The case worth

mentioning is the growth of thin layers with the accompanying

appearance of three-dimensional small islands at the surface.

Then transmission diffraction features are observed on the

screen and advanced analysis of experimental data is possible

(Wang & Lu, 2014).

Reflection high-energy positron diffraction (RHEPD), in

comparison to RHEED, is a relatively new technique, devel-

oped mainly in Japan (Fukaya et al., 2013, 2014). It is inter-

esting that respective dynamical calculations can be executed

for both techniques using the same computer program (Ichi-

miya, 1992). Thus, it seems valuable to discuss theoretical

results for RHEED and RHEPD together.

The goal of this paper is to analyse theoretically the effect of

RHEED and RHEPD intensity oscillation. RHEED oscilla-
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tions can be actually recorded experimentally in some situa-

tions. This occurs if thin films of the material are precisely

grown (e.g. using molecular beam epitaxy) and conditions of

the layer-by-layer growth mode are satisfied. The period of

such intensity oscillations corresponds closely with the time

needed for the deposition of one monolayer of the material.

However, the phenomenon of RHEED oscillation is

explained only partially (Ichimiya & Cohen, 2004; Peng et al.,

2004). Concerning RHEPD oscillations, so far, they have not

been observed in practice, although RHEPD has not yet been

used to monitor the growth of thin films. However, in the

context of the recent development of RHEPD, undertaking

such research work may be expected in the near future. This is

why it seems interesting to discuss features of possible

RHEPD oscillations.

Our goal is to compare predictions from two theoretical

models. Within the first model precise dynamical calculations

for the realistic, one-dimensional scattering potential are

executed. It is also assumed that the potential of the growing

layer is proportional to the potential of the fully completed

layer and the coverage of the layer. In the second model, the

interference of partial, reflected waves is considered and the

final results are obtained with the help of approximate

formulas. However, to describe in detail the motivation for

carrying out the current work, it seems important to recall

some facts. Namely, the first model mentioned was introduced

in the literature by Peng & Whelan (1990). These researchers

also analysed theoretically the behaviour of the phase of

oscillation, showed runs of oscillations for the ideal and non-

ideal modes of the layer-by-layer growth, and also discussed

theoretical oscillations for heteroepitaxy (Peng & Whelan,

1991a,b,c). Further, this approach was verified successfully in

the analysis of the experimental oscillation phase for an off-

symmetry azimuth (Mitura et al., 1998). Additionally, Daniluk

et al. (1996) showed the usefulness of the approach in the

interpretation of oscillation runs for heteroepitaxial growth.

Actually it seems that in some situations it may be important

also to include in considerations scattering by step edges. It

can be done by the introduction of an extra imaginary part in

the crystal potential as discussed in Dudarev et al. (1994) and

in Mitura et al. (1998). Now, concerning the second model used

in the current paper, its basic concepts were introduced by

Horio & Ichimiya (1993) to explain qualitatively the effect of

double minima in RHEED oscillations. This model is called a

simple potential model and it is also based on the assumption

that the scattering potential of the growing layer is propor-

tional to its coverage. However, there are two possible

versions of this model (Horio & Ichimiya, 1993; Mitura, 2014).

In the first version, after the introduction of two values of the

potential to describe the scattering properties of the crystal

(one value is for the bulk crystal and the other for the growing

layer), the Schrödinger equation is precisely solved (Horio &

Ichimiya, 1993; Braun et al., 1998). Such a procedure has some

virtues – it takes account of amplitudes of scattered waves.

However, obtaining simple analytical equations is not possible

for such a case. We do not follow this line in the current work.

We use the other possible version of the interference model.

Namely, by introducing some further simplification,

mentioned in Horio & Ichimiya (1993), one can obtain simple

approximate formulas. In the book of Ichimiya & Cohen

(2004), the values of the phase obtained within such formulas

were compared with RHEED experimental results for GaAs

of Zhang et al. (1987) and of Braun et al. (1998), and

reasonable agreement was found. However, when researchers

at Harvard University used a similar approach in their work

for Ge, they found that the agreement which they achieved in

the course of interpretation of experimental data was not as

good as they had expected (Shin et al., 2007; Shin, 2007). They

concluded that the dynamical theory of RHEED, based on the

assumption that the scattering potential of the growing layer is

proportional to the layer coverage and the potential of the

fully completed layer, may fail to explain their results.

However, in Mitura (2013), it was discussed that the use of the

precise theory employing the realistic, one-dimensional model

of the scattering potential allows one to reproduce the

experimental results shown in Shin et al. (2007). Nevertheless,

the general question of how good are the predictions of the

simplified interference model remained unclear. This is actu-

ally the reason why the current research work was conducted.

We decided to compare, from a possibly broad perspective, the

results obtained using the simplified model introduced by

Horio & Ichimiya (1993) with the results of precise dynamical

calculations. Subsequently, the analysis was performed for the

growth of two materials and for two types of diffraction.

Our paper is organized as follows. In x2, details of the

models and computations are described. Next, in x3, the

results obtained for the homoepitaxy of Ge and GaAs are

shown. Finally, in x4, our conclusions are presented.

2. Details of calculations

2.1. The case of RHEED

First, we describe how to perform precise dynamical

calculations for the one-dimensional model of the potential.

Next, we show how to apply simplified formulas to compute

the phase of intensity oscillations. For details, see also Mitura

(2013).

It is assumed that above the crystal surface the incident and

reflected beams can be expressed with the help of the wave-

vectors Ki and Kf , respectively, and the following relation is

satisfied: jKij
2
¼ jKfj

2
¼ K2. Furthermore, the z components

of these wavevectors are, respectively, equal to �k and k,

where k ¼ jKj sin# and # is the glancing angle. The entire

crystal is assumed to be contained between zB and zT , where

zT > zB, and within the crystal, the following Schrödinger

equation is satisfied: 52�ðrÞ � vðzÞ�ðrÞ þ K2�ðrÞ ¼ 0. The

potential vðzÞ appearing in this equation can be found by

summing the contributions from all two-dimensional meshes

of atoms.

Now, we need to explain how to find the intensity I of the

reflected wave. One of the possibilities is to employ a

numerical program used for solving similar problems for the

three-dimensional potential (Mitura et al., 1998; Mitura, 2013).
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However, in fact the case of the one-dimensional potential can

be treated separately and then numerical calculations can be

executed in a simpler manner. Herein we describe a new

algorithm developed specifically for such a case.

The crystal is divided into W very thin slices having the

same thickness h. It is assumed that the boundaries of the w-th

slice are determined by zw�1 and zw, where zw > zw�1. Addi-

tionally, z0 ¼ zB and zW ¼ zT . We determine a series of

coefficients rw, where w is an integer with values ranging from

0 to W. We begin with r0 ¼ 0. The other coefficients rw are

found computationally using the following formula:

rw ¼
rw�1½1þ hðikþ vw

2ikÞ þ
h2

2 ð�k2 þ vwÞ� þ h vw

2ik

1� hðikþ vw

2ikÞ þ
h2

2 ð�k2 þ vwÞ � rw�1h vw

2ik

; ð1Þ

where vw is the value of the scattering potential in the middle

point of the slice. Finally, the amplitude r of the specularly

reflected beam is given by r ¼ rW and the intensity I of the

reflected beam is determined as I ¼ jrj2. Results obtained with

the computer code based on this algorithm are practically

identical to those obtained using the general code.

An algorithm specific for the one-dimensional potential has

already been introduced in Peng & Whelan (1990). Another

algorithm of this type was shown in Ichimiya (1991). Actually

Ichimiya used a different form of differential equations than

the form used by Peng & Whelan. However, in both cases, the

crystal was divided into thin slices and exact solutions of

respective differential equations within each slice were

considered. Next, the transfer matrices for the entire crystal,

allowing one to compute easily the amplitude of the reflected

wave, were found. Thus, it seems interesting to discuss the

advantages and disadvantages of our approach in relation to

the approaches mentioned above. In this context, the algo-

rithm defined by equation (1) can be considered to be slightly

more convenient for practical use than the previous ones. This

is because we do not find the exact solution of differential

equations within a slice, but rather employ Heun’s method

(Chapra & Canale, 2010) to obtain the numerical solution.

Because of this, we do not need to use advanced mathematical

functions of a complex variable (subsequently, computer

codes can be prepared very easily). Moreover, we do not find

the transfer matrix for the entire crystal, but rather determine,

at the top of each slice, the ratio of amplitudes of backward

and forward waves moving in the crystal. This allows one to

avoid some trouble with fixing the thickness of the crystal

before running computations. In fact, it has already been

discussed in the literature that the finding of transfer matrices

for the thick layers may cause computational divergences.

Therefore, Ichimiya (1983) and Zhao et al. (1988) suggested

that in practical calculations special matrices, relating some

parts of the solutions of differential equations, should be

determined at tops of slices. In this context we can say that our

approach is similar to the method suggested in Ichimiya

(1983). In fact the proposals of Ichimiya (1983) and Zhao et al.

(1988) are different; however, it was discussed in the literature

(Watanabe et al., 1998) that the application of the concepts of

Ichimiya (1983) gives nearly the same results as the applica-

tion of concepts of Light & Walker (1976) which were

employed by Zhao et al. (1988). Coming back to the algorithm

defined by equation (1), it should be said that there are also

some disadvantages in its use. Namely, the form of equation

(1) is not very informative, i.e. one cannot learn from it any

basic properties of the solution, while extracting such infor-

mation is easily possible from the descriptions of the two other

algorithms (Peng & Whelan, 1990; Ichimiya, 1991). Also, it

seems that, in some situations, slices with very small thick-

nesses may be required for use in equation (1) to achieve

similar numerical accuracy as in the case of the application of

exact solutions within individual slices. Thus we can conclude

that the method presented here and the methods of Peng &

Whelan (1990) and of Ichimiya (1991) should be treated more

as complementary methods rather than as alternative ones.

We executed calculations employing the algorithm given by

equation (1) for the homoepitaxial growth of Ge(001) and

GaAs(001). The perfect layer-by-layer growth was assumed

for both materials. Thermal vibrations were not included in

the calculations. Also possible reconstructions at the surface

were ignored for both materials. The scattering potentials

were determined using electron scattering factors for isolated

atoms (Peng et al., 2004) assuming respective multipliers of

0.85 and 0.20 for the real and imaginary parts of the potential

(Mitura, 2013). The phase of the intensity oscillations was

determined for each glancing angle according to the

prescription given in Zhang et al. (1987). Namely, the phase

denoted t3=2=T is defined as the time of the occurrence of the

minimum in the second period of oscillations divided by the

time period of the oscillations.

Now, we describe how the phase can be found in an

approximate way; for more details see Mitura (2013). Namely,

it is assumed that the amplitude of the reflected wave can be

expressed as the sum of the contributions from two partial

waves: the one reflected at the boundary of the vacuum – the

growing layer, and the one reflected at the boundary of the

growing layer – the bulk crystal. To obtain an estimation of

the value of t3=2=T, the condition of the occurrence of the

destructive interference needs to be analysed in detail. This

condition can be expressed as follows: 2�d ¼ ð2nþ 1Þ�, where

� ¼ ðk2 ��evvReÞ
1=2 and d is the thickness of the growing layer

(Horio & Ichimiya, 1993). Further, � is the coverage of the

growing layer andevvRe is the volume-averaged value of the real

part of the potential in the bulk crystal (the imaginary part of

the potential is ignored in these considerations). On this basis,

one can obtain the following condition for �min when the

minimum of the intensity is expected (Ichimiya & Cohen,

2004):

4ðK2 sin2 #��minevvReÞd
2
¼ ð2nþ 1Þ2�2: ð2Þ

Using the formula (2) and additionally taking into account the

relation

t3=2=T ¼ �min þ 1; ð3Þ

one can find values of t3=2=T. It is worth mentioning that the

theoretical curve shown in Shin et al. (2007) and in Shin (2007)

can be reproduced with the help of equations (2)–(3). This is

research papers

Acta Cryst. (2015). A71, 513–518 Zbigniew Mitura � RHEED and RHEPD intensity oscillations 515



why we suppose that the authors of the papers cited used the

same (or very similar) formulas as displayed by us. Further, it

is worth noting that from the use of equations (2)–(3) we

should expect to obtain a plot that consists of different

branches, where each branch represents the dependence of

t3=2=T as a function of the glancing angle for a single value

of n. However, we also need to assume that t3=2=T can take

values only between 1 and 2. Actually, equations (2)–(3) can

be combined and then the following useful formula is obtained

(Mitura, 2013): t3=2=T = ½4d2K2 sin2 #� ð2nþ 1Þ2�2�=
ð4d2

evvReÞ þ 1. Finally, the values ofevvRe needed to use equations

(2)–(3) can be determined on the theoretical basis as discussed

in Mitura (2013) and we used such an approach in this paper.

2.2. The case of RHEPD

Some time ago, Ichimiya suggested in a theoretical paper

that calculations for RHEPD can be executed using computer

codes originally developed for RHEED (Ichimiya, 1992). In

this paper, we followed a similar route. Execution of the

precise RHEPD calculations required modification of the

scattering potential used for RHEED. Namely, its real part

was taken with the opposite sign (the imaginary part was left

unmodified because this part of the potential does not depend

on the particle charge but rather on a detailed mathematical

form selected to describe propagating waves).

Simplified calculations of t3=2=T with the application of

equations (2)–(3) were also performed for RHEPD. The

calculations required only the earlier replacement of evvRe by

�evvRe.

3. Results

Our main results are shown in Fig. 1 and Fig. 2. The basic

difference between calculations for the growth of Ge(001) and

the growth of GaAs(001) is that for Ge the growing layer is

about two times thinner than that of GaAs. For the first case,
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Figure 1
The plots of the phase t3=2=T of the intensity oscillations for the
homoepitaxial growth of Ge(001) layers for RHEED (a) and RHEPD
(b). In both parts of the figure, the results of the precise dynamical
calculations are shown with circles and the results obtained using the
approximate approach are displayed with crosses. The energy for
electrons and positrons is taken to be 15 keV.

Figure 2
The same as Fig. 1 except the plots are for the homoepitaxial growth of
GaAs(001) layers and the energy for electrons and positrons is taken to
be 10 keV.



the growing layer contains one mesh of atoms, whereas for the

second case, two meshes are involved in the growth.

We computed values of t3=2=T with the angular step of 0.01�.

However , to make our figures clearer we displayed plot points

with the step of 0.03�.

If we look at the results for Ge (see Fig. 1), we observe that

for small glancing angles the predictions of the phase t3=2=T

obtained with the help of the simplified approach agree

reasonably well with the results of precise calculations.

However, for higher glancing angles, only general trends are

reproduced with the use of the analytical formulas (2)–(3).

However, the agreement between precise and approximate

results is much better for the case of GaAs (see Fig. 2).

Namely, for some angular ranges, we indeed observe very

similar features. Generally, it also seems that the values of

t3=2=T obtained applying equations (2)–(3) are more accurate

for positrons than for electrons.

Additionally, it is worth briefly discussing the results

concerning the possibility of the occurrence of two minima in

one period of oscillations. According to theoretical investi-

gations, such an effect may occasionally appear for some

glancing angles, but only if the growth mode of the material is

relatively close to the perfect layer-by-layer mode. A detailed

discussion of different aspects of the appearance of double

minima is given in Ichimiya & Cohen (2004). In our case, we

can say that, for the assumed growth of Ge, we did not find this

effect (for either RHEED or RHEPD). However, for GaAs,

the situation is different. If we take a look at the plots

obtained with the help of equations (2)–(3) (see Fig. 2) then

we can recognize that double minima can be expected in the

angular range 0–0.61� for RHEED. For RHEPD, a similar

situation occurs for angles of 1.86–2.16�. This is because in the

above angular regions for each glancing angle there are two

values of t3=2=T. However, it is interesting to compare the

approximate results with the results obtained using the precise

dynamical theory. For calculations for the realistic one-

dimensional potential, double minima can be recognized only

by directly examining oscillation runs (i.e., the analysis of Fig. 2

is not proper for these calculations because, for this case,

during the determination of t3=2=T only the smallest value in a

period was identified, as explained in x2). However, we found

in the course of the additional examination of individual

oscillation runs that double minima (for the perfect layer-by-

layer growth) can be expected in the range of 0–0.80� for the

case of RHEED and in the range of 1.92–2.10� for RHEPD.

Thus, we can say that there exists very good correlation

between the results obtained using the simplified approach

[equations (2)–(3)] and those obtained employing the dyna-

mical calculations for the one-dimensional scattering poten-

tial.

4. Conclusions

We conclude that the concept to explain features of RHEED

and RHEPD intensity oscillations expected to be observed for

the perfect growth of materials employing two interfering

waves and taking into account the refraction effects is very

valuable. This concept, introduced in Horio & Ichimiya

(1993), helps us to understand the physics ruling the appear-

ance of intensity oscillations. However, using only the analy-

tical approximate formulas (which are available within the

simplified approach), we should not expect, in general, to go

beyond the level of the qualitative predictions. We admit that

in many situations the application of more advanced theore-

tical models may be required. In particular, for off-symmetry

azimuths, conducting calculations employing the realistic one-

dimensional potential seems to be more appropriate if precise

theoretical predictions of the features of intensity oscillations

are needed. However, we should also admit that in some

situations, to realize such a goal, the inclusion of the effects of

diffuse scattering may prove to be crucial.
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